
J. Non-Equilib. Thermodyn. 2020; 45(3): 291–304

Research Article

Bing-Yang Cao, Miroslav Grmela*, Zeng-Yuan Guo, Yu-Chao Hua, and Ben-Dian Nie

Two Temperature Extension of Phonon
Hydrodynamics
https://doi.org/10.1515/jnet-2020-0029
Received March 7, 2020; revised April 20, 2020; accepted May 8, 2020

Abstract: Phonon hydrodynamics uses the fields of the total energy and the heat flux as state variables. We
extend it by promoting the microscopic internal energy field into the status of an extra independent state
variable. The governing equations of both the phonon and the extended (two temperature) phonon hydrody-
namics are formulated as particular realizations of the abstract GENERIC equation. Such unified formulation
makes both theories manifestly compatible with mechanics and thermodynamics. Also differences and sim-
ilarities (in the physical content, in the mathematical structure, and in qualitative properties of solutions)
between the two heat transfer theories, as well as their mutual compatibility, become manifestly displayed.
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1 Introduction

Disagreement of results of experimental observations of heat transfer with theoretical predictions [1–14] have
led from the Fourier theory to the Cattaneo–Vernotte theory [15], [16] and then to its viscoelastic extension
[17]. The physical basis of both extensions is the inclusion of inertia. In the case of the Cattaneo–Vernotte
theory the extension is made by adopting the heat flux as an extra state variable and in [17] by adopting the
flux of the heat flux (i. e., a heat deformation tensor) as an extra state variable. In the context of the classical
hydrodynamics, the first extension leads to the Euler–Navier–Stokes type hydrodynamics (this analogy gives
the Cattaneor–Vernotte theory the name phonon hydrodynamics) and the extension in [17] leads to rheology
(hydrodynamics of viscoelastic fluids).

Following still the analogy with classical hydrodynamics, we recall (see, e. g., [18]) that the extra state
variables introduced in extensions do not have to be always fluxes, but they can also be some types of char-
acterizations of the internal structure of the fluids under investigation (as is the case for instance in extensions
needed in investigations of polymeric fluids). The extension of the Fourier heat transfer theory that we are
making in this paper is inspired by the following three types of previous heat transfer investigations. First, it is
the thermomass extension [19–26] of the Fourier theory. The internal energy is seen as mass (via the Einstein
mass–energy relation) and the scalar field of thermal mass is adopted as a new state variable. Another, inde-
pendent, motivation comes from an attempt to introduce a Lagrangian formulation of the Cattaneo–Vernotte
phonon hydrodynamics [27]. The internal energy of the heat fluid particles (called caloric particles in [27])
then plays a role that is analogous to the role of mass that the fluid particles play in the Lagrangian formula-
tion of Euler–Navier–Stokes–Fourier hydrodynamics. Still another, also independent, source of motivation
comes from investigating Grad hierarchies [28–30]. The velocity moments of the one particle distribution
function are equipped in [28–30], with an additional structure. They are divided into two classes: F-moments
(mass-like moments) and G-moments (energy-like moments) in [29], [30] and Grad moments and entropic
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moments in [28]. The Grad hierarchy becomes a double hierarchy, F-hierarchy governing the time evolution
of F-moments, and G-hierarchy governing the time evolution of G-moments. The G-hierarchy, or alternatively
the hierarchy of entropic moments, is then our motivation.

Our objective in this paper is to formulate both the phonon hydrodynamics and its extensions as par-
ticular realizations of the GENERIC time evolution equation. The unified (and manifestly compatible with
mechanics, thermodynamics, and each other) formulation allows us to see clearly differences and similari-
ties in physical and mathematical aspects of both heat transfer theories. In Section 2 we recall the GENERIC
equation, in Section 3wediscuss the phononhydrodynamics, and in Section 4wediscuss its two temperature
extension.

2 GENERIC
What is themathematical structure of the time evolution equations that (i) guarantees compatibility of its so-
lutions with mechanics and thermodynamics and (ii) is identified as a common structure of well-established
(i. e., well-tested with experimental observations) mesoscopic dynamical theories like the Boltzmann kinetic
theory andNavier–Stokes–Fourier hydrodynamics? It hasbeen suggested that theGENERIC structure answers
both questions. A detailed formulation of GENERIC, its history, its consequences, andmany illustrations can
be found in [18]. Both the phonon and the two temperature hydrodynamics are presented below as particular
realizations of the GENERIC structure. We therefore begin by briefly recalling GENERIC.

Let x denote the state variable and

E = E(x),
S = S(x) (1)

the fundamental thermodynamic relation, where E(x), a real valued function of x, is the energy and S(x), a
real valued and concave function of x, is the entropy.

The Hamiltonian time evolution is generated by the energy E(x) and the energy E(x) is preserved in it.
The Hamiltonian part of the GENERIC time evolution is also generated by E(x), the energy is also preserved in
it, and in addition, another potential, called entropy S(x), is required to be preserved in it. From the physical
point of view, the Hamiltonian time evolution expresses mechanics. The Hamiltonian part of the GENERIC
time evolution expresses an incomplete mechanics. The mechanics is incomplete because some of the state
variables that are needed to follow all the details are missing. Due to the incompleteness, the Hamiltonian
part of the time evolution is supplemented in GENERIC by another, non-Hamiltonian part, which expresses
the influence of themissing data. The extra part still preserves the energy E(x) but increases the entropy S(x).
Due to the latter consequence the non-Hamiltonian part of the GENERIC time evolution is called a dissipative
part. In this section we present first the Hamiltonian part and then the dissipative part.

The vector field generating the Hamiltonian time evolution of x is a gradient Ex of energy E(x) (i. e., a
co-vector) transformed into a vector by a Poisson structure L,

ẋ = LEx . (2)

We use hereafter the notation Ex =
àEàx . In the case when x is an element of an infinite dimensional space

(as is the case for example in hydrodynamics) the partial derivative is an appropriate functional derivative
(see, e. g., the Appendix in [18]). From the physical point of view, the gradient Ex of the energy E(x) is the
driving force of the time evolution and the Poisson structure L expresses kinematics of the state variable x.
The general properties required from L are conveniently expressed with the help of the Poisson bracket

{A,B} =< Ax , LBx >, (3)

where A and B are sufficiently regular real valued functions of x and <,> is the inner product. We say that
{A,B} is a Poisson bracket if (i) {A,B} = −{B,A}, (ii) {A,B} is linear in Ax and Bx, and (iii) the Jacobi identity
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{A, {B,C}}+{B, {C,A}}+{C, {A,B}} = 0 holds (for details, see [18]). Using the Poisson bracket, the time evolution
(2) can be written in the form

Ȧ = {A,E},∀A. (4)

The energy E(x) is automatically preserved in the Hamiltonian time evolution (2) since Ė = {E,E} = 0. The
physical requirement of energy conservation thus does not restrict in any way the freedom of choice of the
energy E(x). If x is a mesoscopic state variable (i. e., x is not (r1, ..., rn,u1, ...,un) or the n-particle distribution
function fn(r1, ..., rn,u1, ...,un), where n ∼ 1023 is the number of particles composing the macroscopic system
under investigation and (r1,ui); i = 1, ..., n, are their position vectors and momenta), then (2) represents only
a part of the mesoscopic time evolution. An extra term on its right hand side has to be added and an extra
requirement has to be placed on the first term on the right hand side of (2). The extra requirement is that in
addition to the energy E(x), also another potential, namely, the entropy S(x), is preserved. The extra term on
the right hand side of (2), generated by the entropy S(x), is presented in the next paragraph. The conservation
of S(x) in the Hamiltonian time evolution generated by (2) can be achieved by making the Poisson structure
L degenerate. A function C(x) is called a Casimir of the Poisson bracket {A,B} if {A,C} = 0,∀A. A degenerate
Poisson structure is often referred to as a Poisson structure. The physical requirement of the conservation of
the entropy in the Hamiltonian part of the mesoscopic time evolution of macroscopic systems is thus mathe-
matically formulated as

{A, S} = 0,∀A, (5)

or in other words, the entropy S(x) is a Casimir of the Poisson bracket {A,B}.
Now we proceed to the dissipation part of the time evolution. If x represents a complete microscopic

characterization of macroscopic systems (i. e., x includes all position vectors and momenta of all n particles
composing the macroscopic system or alternatively x is the n-particle distribution function fn), then (2) is a
complete time evolution equation. If however x is a mesoscopic state variable characterizing only some over-
all important features, then the right hand side of the time evolution equation (2) has to be supplemented
with an extra term expressing the influence of the ignored details. The extra term is generated by the entropy
S(x), makes the entropy increase, and leaves the energy E(x) unchanged. As argued in [18], [31], the general
mathematical formulation of the extra term is [Ξ(x, x∗)x∗ ]x∗=Sx . The quantity Ξ(x, x∗) is a real valued func-
tion (x, x∗), called a dissipation potential, satisfying the following four properties: (i) Ξ(x,0) = 0, (ii) Ξ(x, x∗),
as a function of x∗, reaches its minimum at x∗ = 0, (iii) Ξ(x, x∗) is a convex function of x∗ in a neighbor-
hood of x∗ = 0, and (iv) < Ex , [Ξ(x, x∗)x∗ ]x∗=Sx >= 0. It is easy to verify (see details in [18]) that solutions to
ẋ = [Ξ(x, x∗)x∗ ]x∗=Sx satisfy Ė = 0 and Ṡ > 0. In the Boltzmann kinetic equation, the details ignored in the
time evolution are details of the gas particle trajectories during their collisions. The right hand side of the
Boltzmann kinetic equation consists of two terms; the first one is the right hand side of (2) expressing phys-
ically the influence of the free flow of the gas particles and the second one is the Boltzmann collision term
expressing the influence of binary collisions.

The abstract formulation of a mesoscopic time evolution equation (called GENERIC equation – for its
complete formulation and its provenance see [18]) is

ẋ = LEx + [Ξ(x, x
∗)x∗]x∗=Sx . (6)

In the absence of the Hamiltonian term, the time evolution governed by

ẋ = [Ξ(x, x∗)x∗]x∗=Sx (7)

is called a generalized gradient time evolution. With the choice Ξ(x, x∗) =< x∗, Λ(x)x∗ >, where Λ is a sym-
metric positive operator satisfying ΛEx = 0, the time evolution governed by

ẋ = ΛSx (8)

is called a gradient time evolution.
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In the course of the time evolution generated by (6), (7), and (8), the energy E(x) is conserved and the
entropy S(x) increases, i. e.,

Ė = 0,
Ṡ > 0. (9)

As the time t → ∞, the state variable x → x∞ and the fundamental thermodynamic relation (1) transforms
into the fundamental thermodynamic equilibrium relation S(eq) = S(eq)(E(eq)), where E(eq) = E(x∞) is the
equilibrium energy, S(eq) = S(x∞) is the equilibrium entropy, and x∞ is the equilibrium state reached as t →
∞. From the physical point of view, the GENERIC equation (6) is a mathematical formulation of mechanics
with incomplete data. The influence of the missing data is taken into account in the second term on the right
hand side of (6). The GENERIC equation (6) expresses a commonmathematical structure of a very large class
of well-established (i. e., well tested with experimental observations) mesoscopic time evolution equations
(see more in [18]).

3 Phonon hydrodynamics

We recall first the Fourier theory and then its Cattaneo–Vernotte extension. Both theories are required to be
compatible with mechanics and thermodynamics and thus both theories are presented as particular realiza-
tions of (6).

3.1 Fourier

In the Fourier theory of heat transfer the energy field

x(F) = e(r) (10)

serves as the only state variable. The fundamental thermodynamic relation (1) is

E = ∫ dre(r),

S = ∫ drs(r), (11)

where the local entropy s(r) is a function of e(r):

s(r) = s(e; r). (12)

We require that se > 0 so that there is a one-to-one transformation (e(r) �° s(r)). Following the terminology
established in [32], we call the formulation in which e(r) serves as the state variable and s(r) is given by the
fundamental thermodynamic relation an entropy representation and the inverse an energy representation.

The time evolution in the Fourier theory is governed by (7). The Hamiltonian part is absent. With the
dissipation potential

Ξ(F)(e, e∗) = 1
2
∫ dràie

∗Λ(F)àie∗, (13)

eq. (7) becomes the classical Fourier equation

àe
àt
= −ài (Λ

(F)ài (se)) . (14)
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We use hereafter the summation convention, ài =
ààri , and Λ(F) is a positive definite operator. Since we are

restricting ourselves in this paper to externally unforced macroscopic systems, the boundary conditions as-
sociated with (14), as well as with all time evolution equations introduced later in this paper, are such that all
the integrals over boundaries arising in investigations of their solutions equal zero (e. g., periodic boundary
conditions).

Since (14) is a particular realization of (6), its solutions imply (9), which, together with the existence of
readily available wallsW(e) (called thermodynamic walls), which either prevent passing (W(e;closed)) or freely
allow passing (W(e;open)) of the energy e, provide the basis for observing the heat transfer experimentally. The
essential element of the experimental observations is the measurement of temperature by a thermometer. A
thermometer is a macroscopic system surrounded byW(e;open). If we put the thermometer in contact with the
macroscopic system under investigation at position r and surround both the system and the thermometer
by the wallW(e;closed), then, due to (9), the system and the thermometer reach, as t → ∞, an equilibrium at
which (se(r))system = (se)thermometer. Using the standard terminology

se(r) = 1
T(r)
, (15)

where T(r) is the local absolute temperature, the temperature of the system at position r becomes at equilib-
rium the same as the temperature of the thermometer. What remains is to make [T]thermometer visible in the
thermometer. This is done by identifying a state variable of the thermometer that can bemade visible and for
which its dependence on the temperature is known (e. g., volume).

In passing from the entropy to the energy representation Se(r) = 1
T(r) changes into Es(r) = T(r).

3.2 Cattaneo–Vernotte

The Cattaneo–Vernotte extension of (14) consists in introducing inertia into the heat transfer. The right hand
side of (14) is written as −àiqi and the heat flux q is adopted as an independent state variable for which a
new time evolution equation is introduced. This is like inmechanics where the time derivative of the position
vector r equals velocity v and Newtonian mechanics introduces a new time evolution equation for the veloc-
ity. In the Hamiltonian formulation of the Newton mechanics it becomes clear that the newly adopted state
variable is not in fact the velocity but the momentum (i. e., the variable that is conjugate to the velocity). We
therefore anticipate that the newly adopted state variable in the heat transfer will not be exactly the heat flux
q(r) but a vector field (we denote it by the symbol w(r)) related to it. We shall call the field w(r) a phonon
momentum. Its relation to the heat flux q will be revealed in the time evolution equations (see (21)).

The state variables of the Cattaneo–Vernotte theory are thus

x(CV) = (e(r),w(r)). (16)

The fundamental thermodynamic relation (11) remains the same but the local entropy s(r),

s(r) = s(e,w; r), (17)

depends now also on the field w(r) since w(r) is one of the state variables. As in (12), we require that se > 0
so that we can use both the entropy and the energy representations. We recall that the derivatives transform
in the passage from one representation to another as follows: Es =

1
Se
; Ewi
= −

Swi
Se
. Moreover, we choose (17)

in such a way that w = 0 at equilibrium, i. e., we require that equation to sw = 0 is w = 0. In most papers
devoted to the Cattaneo–Vernotte theory [33] the function s(e,w; r) is chosen as s(e,w; r) = s(e; r) − 1

2aw
2,

where a > 0 is a constant.
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3.2.1 Hamiltonian time evolution

Having chosen the state variables (16), our next task is to find their kinematics, i. e., the Poisson bracket
{A,B}(CV) expressing it mathematically. In order to guarantee the required degeneracy of the Poisson struc-
ture, we change the representation. Instead of using the entropy representation, we pass to the energy repre-
sentation in which the entropy field s(r) serves as the state variable.

What is the Poisson bracket expressing kinematics of (s(r),w(r))? Inspired by the mass-like view of heat
transfer suggested in [27], it has been conjectured in [34–36] that the kinematics of (s(r),w(r)) is the same as
the kinematics of (s(r),u(r)), where u is the mass momentum, i. e.,

{A,B}(CV) = ∫ dr [s[àj(As)Bwj
− àj(Bs)Awj

]

+ wj[ài(Awj
)Bwi
− ài(Bwj

)Awi
]] . (18)

There are several ways to derive (18) withw replaced by the momentum u (see [18]). We briefly recall one
of them. From the mathematical point of view, motion of continuum (i. e., of a region in ℝ3) is a sequence
of mappings ℝ3 → ℝ3. These mappings form a Lie group. A part of the general theory of Lie groups is the
following result. The dual of the Lie algebra associated with a Lie group is equipped with a Poisson structure
(see [18] for references anddetails). In the case of the Lie groupof transformationsℝ3 → ℝ3, the fieldu(r) is an
element of the dual of its Lie algebra. The second line in (18) is the Poisson bracket expressingmathematically
its Poisson structure. The remaining one line in (18) represents a contribution to the Poisson bracket due to
the passive advection of the scalar field s(r) by the motion the continuum (see references and details in [18]).

The Hamiltonian time evolution equation (4) corresponding to the Poisson bracket (18) becomes

às
àt
= −àj(sEwj

),

àe
àt
= −àj(Ewj

(e + π)),

àwi
àt
= −àj(wiEwj

+ πδij), (19)

π = −e + sEs + wiEwi
, (20)

where the energy E is given in (11), e(r) = e(s,w; r) is the fundamental thermodynamic relation (17), and π(r)
is the local phonon pressure.

The required degeneracy of the Poisson bracket (18) (i. e., conservation of the total entropy S in the time
evolution governed by (2)) is clearly satisfied (the first equation in (19) has the form of the local conservation
law). Moreover, the energy E is, of course, also conserved during the time evolution since (19) are Hamilton’s
equations. Both E and S are defined in (11). In addition, also the total phonon momentum W = ∫ drw(r)
remains unchanged during the Hamiltonian time evolution because the right hand side of the third equation
in (19) has the form of the local conservation law. From the second equation in (19) we also see that the heat
flux q is related tow by

qi = (e + π)Ewj
. (21)

3.2.2 Gradient time evolution

We turn now to the dissipative (gradient) part of the time evolution (i. e., to the second term on the right hand
side of (7)). In order to satisfy the required degeneracy (i. e., the requirement that the energy is conserved), it
is convenient to pass to the entropy representation (i. e., (e(r),w(r)) serve as state variables). The dissipation
potential with which (6) becomes the Cattaneo–Vernotte equation is

Ξ(CV)(e,w;w∗) = 1
2
∫ drw∗i Λ(CV)w∗i , (22)
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where Λ(CV) is a positive definite operator. With the dissipative term Ξ(CV)w∗ |w∗=Sw , eqs. (19) take the form
às
àt
= −àj(sEwj

) + σ,

àe
àt
= −àj((e + π)Ewj

),

àwi
àt
= −àj(wiEwj

+ πδij) −
Λ(CV)
Es

Ewi
, (23)

where

σ =
Ewi

Es
Λ(CV) Ewi

Es
> 0 (24)

is the entropy production.
The equations in (23) become the Guyer–Krumhansl equations [37], [38] if the Guyer–Krumhansl dissi-

pation potential (22) is supplemented with another term,

Ξ(GK) = ∫ dr 1
2
(ài (

w∗j
e∗ ) + àj (w∗ie∗ ))Λ(GK) 12 (ài (w∗je∗ ) + àj (w∗ie∗ )) , (25)

that is analogical to the Navier–Stokes term in the classical hydrodynamics. The quantity Λ(GK) is related to
the phonon viscosity coefficient (see details in [18]).

Solutions to (23) imply (9) since they are a particular realization of (6). As discussed in Section 3.1, these
two properties, together with the existence of thermodynamic wallsW(e), provide again a basis for measur-
ing the local temperature (15). Since the entropy depends in this section also on w, the local temperature
depends also onw. What wemeasure with thermometers depends on the nature of the thermodynamic walls
W. In principle, we can think of several different types of walls: Type 1 walls that allow to pass freely or block
completely the passing of the total energy e, Type 2 walls that block the passing of the part of the energy that
arises due to the heat flux, and Type 3 walls that allow to pass freely both types of energies (i. e., the inter-
nal energy and the energy that arises due to the heat flux) but with different relaxation times. Only with the
Type 1 walls the measured temperatures will be the same as those in Section 3.1. In order to investigate the
remaining two types of walls, we need an extended heat transfer theory. One such theory is introduced in
Section 4.

3.2.3 Compatibility with mechanics, thermodynamics, and the Fourier theory

The Hamiltonian nature of the nondissipative part of the equations in (23) and the conservation of the to-
tal energy E = ∫ dre(r) in the time evolution governed by (23) demonstrate the compatibility of (23) with
mechanics. The positivity of the entropy production (24) demonstrates the compatibility of (23) with thermo-
dynamics. Moreover, (23) is also compatible with the Fourier equation (14) (see [18], [36], [39]). Here we only
briefly recall the essential idea of the demonstration. We assume that w relaxes to equilibrium faster than e
and s and that we are already close to the equilibrium (i. e.,w is small). If we neglect in the second and third
equations in (23) the quadratic and higher order terms inw we obtain

àe
àt
= −àj((e + π)Ewj

),

àwi
àt
= −àiπ −

Λ(CV)
Es

Ewi
. (26)

Assuming that Λ(CV) is a positive constant and that w already reached its stationary value, we see that (26)
implies

àe
àt
− ài ((
(e + π)T
Λ(CV) ) àiπ) , (27)

which, when we use e = Ts, becomes (14) with Λ(F) = ((e+π)T)2Λ(CV) .
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4 Two temperature hydrodynamics
Disagreements of results of experimental observations of the propagation of heat pulses with predictions of
the Cattaneo–Vernotte theory [17] call for extensions of the phonon hydrodynamics. One such extension is
made in [17]. The right hand side of the third equation in (23) is written as −àjQij and the tensor field Qij(r)
(the flux of the heat flux) is adopted as an independent state variable. The phonon hydrodynamics becomes a
phonon viscoelastic hydrodynamics. GENERIC formulation of this extra-inertiamodification of the Cattaneo–
Vernotte equation can be found in [36].

The two temperature hydrodynamics that we are going to develop below is still another modification
of the governing equations in (23) of the Cattaneo–Vernotte phonon hydrodynamics. More details are not
introduced into the fluxes but into the energy. We distinguish the part of the energy associated with the heat
flux and the remaining part, which we call microscopic internal energy. The latter, denoted ε(r), is a scalar
field that we adopt as an independent state variable. The state variables

x(2th) = (e(r), ε(r),w(r)) (28)

thus include two energies: the total energy field e(r) and the microscopic internal energy field ε(r). The fun-
damental thermodynamic relation corresponding to the state variables (28) is again (11) but with

s(r) = s(e, ε,w; r). (29)

As we did in the Fourier and Cattaneo–Vernotte theories, we assume that se > 0 so that there is a one-to-
one transformation between the state variables (e(r), ε(r),w(r)) and (s(r), ε(r),w(r)) and we can use always
both the energy and the entropy representations. We shall moreover assume that the function s(e, ε,w; r) is
concave and that sw = 0 implies w = 0. Having two energy fields, namely, the total energy field e(r) and the
internal energy field ε(r), we also have two temperatures, namely,

se(r) = 1
T(r)
,

sε(r) = 1
ϑ(r)
, (30)

where T(r) is the local temperature (the same as in (15)) and ϑ(r) is the local internal temperature. The pres-
ence of two temperatures in our extension is the reason why we call it a two temperature extension. We recall
that mesoscopic theories withmore energies and thus withmore than one temperature have been introduced
before (see for example the investigations in [40] with the translational, rotational, and vibrational tempera-
tures).

The physics that is behind the two temperature hydrodynamics can come from several sources. The first
one is the thermomass hydrodynamics introduced in [19–26]. The internal energy is regarded in [19–26] as
mass via the Einstein mass–energy relation. Since the mass field serves as an independent state variable in
the classical hydrodynamics, it is natural to adopt the internal energy as an independent state variable. The
second source is an attempt [27] to formulate a Lagrangian version of the Cattaneo–Vernotte hydrodynamics
(i. e., to formulate (23) as the time evolution of phonon fluid – called in [27] caloric – particles). The third
motivation comes from investigations [29], [30] of the Grad hierarchy. Velocity moments of the one particle
distribution function are equipped in [29], [30] with an extra structure. They are divided into two groups, F-
moments (called mass or mass-momentum moments) and G-moments (called energy moments). The part of
the hierarchy governing the time evolution of G-moments (called G-hierarchy) represents then an extended
Cattaneo–Vernotte hydrodynamics that motivates our two temperature extension.

Two other physical considerations support the two temperature extension. The first begins with the mi-
croscopic viewpoint in which macroscopic systems are seen as being composed of n ∼ 1023 atoms. The state
variable is x(Micro) (for instance the n-particle distribution function). The time evolution of x(Micro) is governed
by Hamilton’s equations with the energy E(Micro)(x(Micro)). Collection of their solutions for a family of initial
conditions anda family of energiesE(Micro)(x(Micro)) is called amicroscopic phaseportraitP(M). In order to gain
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an insight into the overall mesoscopic behavior we have to recognize in P(M) a pattern P(m) that can then be
regarded as a mesoscopic phase portraitP(m) corresponding to the mesoscopic time evolution of mesoscopic
state variables x(meso) = Π(Mm)(x(Micro)), where Π(Mm) is a projection. The first step made on this route is the
phonon viewpoint of heat, mathematically formulated in the phonon kinetic equation [41]. The next step can
then be, following [29], [30], a passage to mesoscopic phonons with an internal structure characterized by
the microscopic internal energy ε(r). The remaining part of the total energy (kinetic and potential energies)
comes from the overall motion (characterized by the heat flux) of the mesoscopic phonons. Extrapolating re-
sults obtained in investigations of the time evolution of gases with long range interactions [42], [43], we can
anticipate that the mesoscopic phonons can also experience a turbulent motion. This could then be another
type of energy arising in the heat transfer.

The second type of physical considerations supporting the two temperature hydrodynamics stays inside
the continuum viewpoint. Taking inspiration from fluid mechanics, in particular from the fluid mechanics
of complex fluids (for example polymeric fluids, see, e. g., [18]), extensions are made not only by adopting
the fluxes as new state variables but also by entering deeper into the microscopic nature of the fluids and
adopting some characterizations of their internal structure as extra state variables. This type of considera-
tions represents another route to the two temperature hydrodynamics. The internal energy becomes the new
state variable characterizing the internal structure. Following the analogy between mass and heat transfer,
the two temperature extension of the heat transfer becomes analogous to two component extension in the
mass transfer in which more detailed observations reveal that the fluid under investigation is in fact a two
component fluid. The two energy fields in the two temperature theory (one being the overall energy e(r) and
the other the microscopic internal energy ε(r)) play the role that the total mass density and the mass density
of one of the two components play in the two component hydrodynamics.

The above considerations lead us to the more specific fundamental thermodynamic relation (29). In the
entropy representation, we assume that

E = E(micint) + E(mesint), (31)

where themicroscopic internal energy E(micint) is the energy of the atoms generating theirmicroscopicmotion
and the mesoscopic internal energy E(mesint) is the energy of atoms generating their mesoscopic motion (heat
flux);

E(micint) = ∫ dre(micint)(s, ε; r),
E(mesint) = ∫ dre(mesint)(s, ε,w; r). (32)

The mesoscopic local internal energy e(mesint)(s, ε,w; r) is a sum of the mesoscopic kinetic energy w2

2μ(s,ε) and
the mesoscopic potential energy ν(s, ε)àiεàiε. The quantity μ > 0 plays a role in the heat transfer that is anal-
ogous to the role that the mass plays in the mass transfer. As argued in [19–26], μ is proportional to ε(r). The
mesoscopic potential energy, as also argued in [19–26], arises due to spacial inhomogeneities of the micro-
scopic internal energy ε. Both μ and ν are real valued functions of the entropy field s(r) and the microscopic
internal energy ε(r). We assume that the energies in (32) are chosen in such a way that the equation Sw = 0
is solved by w = 0. A more detailed specification of (32) requires a more detailed analysis of the atomic and
molecular motion on the microscopic scale. In this paper we leave this problem open.

We note that if the entropy S in (29) depends on ε(r) nonlocally (i. e., the entropy at the point r depends
on ε(r) and also on àiε(r)) then the local internal temperature defined in (30) becomes (the derivative with
respect to ε(r) has to be changed into the variational derivative with respect to ε(r))

1
ϑ(r)
= sε(r) − àj(sàjε(r)). (33)

We recall that in this paper we do not consider imposed external forces (as for example an imposed inter-
nal temperature gradient) that prevent approach to equilibrium. An extension of the GENERIC type analysis
to externally forced systems is presented for example in [44].
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4.1 Hamiltonian time evolution

Our next task is to write down equations governing the time evolution of (28). As we did for the state vari-
ables (10) and (16), we require that the equations are compatible with mechanics and thermodynamics and
consequently, we assume that they are a particular realization of the GENERIC equation (6). In order to write
down the Hamiltonian part, we need to know the kinematics of (28), i. e., the Poisson bracket expressing it
mathematically.

The kinematics of (s(r),w(r)) is expressed in (18). Howdoes this Poisson bracket changewhen (s(r),w(r))
is replaced by (s(r), ε(r),w(r))? As the scalar field s(r), the scalar field ε(r) is assumed to be passively advected
with the phonon momentumw(r). The same assumption is made about the mass field ρ(r)when we want to
extend the Poisson bracket expressing kinematics of (s(r),u(r)), where u(r) is the mass momentum field, to
the Poisson bracket expressing kinematics of the full set (s(r), ρ(r),u(r)) of state variables of the classical
hydrodynamics. Consequently, the Poisson bracket expressing kinematics of (s(r), ε(r),w(r)) is (18) with an
additional third line that is the same as the first line except that s is replaced by ε, so we have

{A,B}(2th) = ∫ dr [s[àj(As)Bwj
− àj(Bs)Awj

]

+ ε[àj(Aε)Bwj
− àj(Bε)Awj

]

+wj[ài(Awj
)Bwi
− ài(Bwj

)Awi
]] . (34)

If ρ replaces ε and u replacesw, the Poisson bracket (34) is indeed the Poisson bracket expressing kinematics
in the classical hydrodynamics (see [18] for original references and details).

Equation (2) corresponding to the Poisson bracket (34) is

às
àt
= −àj(sEwj

),

àε
àt
= −àj(εEwj

),

àe
àt
= −àj(Ewj

(e + π)),

àwi
àt
= −àj(wiEwj

+ πδij), (35)

π = −e + sEs + εEε + wiEwi
. (36)

If the energy depends also on gradients of ε (as for instance the mesoscopic potential energy in (32)), then
(see [45] where this type of analysis is made in the context of the mass transport) the heat pressure π changes
into

π = −e + sEs + εEε + wiEwi
− εàjEàjε (37)

and the fourth equation in (35) turns into

àwi
àt
= −àj(wiEwj

+ ài(ε)Eàjε + πδij). (38)

We recall (see (30)) that Es =
1
Se
= T and Eε = −

Sε
Se
= − Tϑ .

4.2 Gradient time evolution

As in the Cattaneo–Vernotte theory (see Section 3.2.2), we let the heatmomentumw dissipate directly sincew
addressesmoremicroscopic details than e and thuswe expectw to relaxmore rapidly than e. Moreover, since
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we expect that the energy dissipated in the time evolution of w will enter the microscopic internal energy ε,
we also let ε dissipate correspondingly. Instead of the dissipation potential (22) we choose now

Ξ(2temp) = 1
2
∫ dr

w∗i
ε∗ Λ(2temp)w∗i

ε∗ , (39)

where Λ(2temp) is a symmetric positive definite operator. The remaining state variable ewill relax indirectly in
the course of the time evolution through its coupling tow(r) in the vector field (35) (see Section 4.2.1).

The equations in (35) with the dissipation term become

às
àt
= −àj(sEwj

) + σ,

àε
àt
= −àj(εEwj

) + Ξε∗

= −àj(εEwj
) +

ϑ3

T2
Λ(2temp)Ewi

Ewi
,

àe
àt
= −àj(Ewj

(e + π)),

àwi
àt
= −àj(wiEwj

+ πδij) + Ξw∗i

= −àj(wiEwj
+ πδij) −

ϑ2

T
Λ(2temp)Ewi

, (40)

with the entropy production

σ = w∗i Ξw∗i + ε∗Ξε∗ = 2( ϑT )2 Λ(2temp)Ewi
Ewi
. (41)

An extra (viscosity type) dissipation of w can be added to the right hand side of the fourth equation in
(40) by replacing the dissipation potential Ξ(2temp) with Ξ(2temp) + Ξ(GH), where Ξ(GH) is the Guyer–Krumhansl
dissipation potential given in (25).

4.2.1 Compatibility with mechanics, thermodynamics, and the Fourier theory

Agreement of solutions to (35) with observations constituting the experimental basis for the compatibility
with mechanics and thermodynamics is guaranteed since (35) is a particular realization of (6).

Nowwe turn to the compatibility with the Fourier theory. As in Section 3.2.3, we assume thatw relaxes to
equilibrium (i. e., to solutions to Sw = 0) faster than e, s, and ε, and thatwe are already close to the equilibrium
(i. e., w is small since the solution to Sw = 0 is w = 0). If we neglect in the equation governing the time
evolution ofw the quadratic and higher order terms inw we arrive at

àε
àt
= −àj(εEwj

) +
ϑ3

T2
Λ(2temp)Ewi

Ewi
,

àe
àt
= −àj((e + π)Ewj

),

àwi
àt
= −àiπ −

ϑ2

T
Λ(2temp)Ewi

, (42)

where π = −e + Ts − T
ϑ ε. Assuming that àwiàt = 0 we arrive at

àε
àt
= ài ((

εT
ϑ2Λ(2emp) ) àiπ) + 1

ϑΛ(2temp) ài(π)ài(π),
àe
àt
= ài ((

(e + π)T
ϑ2Λ(2temp) ) àiπ) , (43)
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where àiπ = sàiT − εài (
T
ϑ ). These two equations represent now the two temperature version of the Fourier

theory. Instead of one equation governing the time evolution of the total energy density e(r), the two tem-
perature Fourier theory consists of two coupled equations governing the time evolution of the total energy
density e(r) and the microscopic internal energy ε(r). Asymptotically (as t → ∞) solutions to (43) tend to
solutions to

àiπ = sàiEs + εàiEε = sàiT − εài (
T
ϑ
) = 0. (44)

The equilibrium states implied by the two temperature theory (40) are thus w = 0 and solutions to (44). The
temperatures T and ϑ become the same and independent of the position coordinate r.

More detailed properties of solutions to (40) can be discussed only after making a more detailed specifi-
cation of the fundamental thermodynamic relation (29) and of the operators Λ(2tewmp) entering the dissipation
potential. Particularly interesting is the question of themeasurability of the two temperatures T and ϑ. A use-
ful insight needed to answer this question can be gained by asking the analogous question in the context of
themass transfer: Howdowemeasure the two chemical potentials in two component systems?Whatwe need
are membranes that are selectively permeable or impermeable for the two components. In the context of the
two temperature viewpoint of the heat transfer the temperatures play the same role as chemical potentials
and thus for measuring them separately we need thermodynamic walls (an analog to membranes) that selec-
tively allow to pass or stop themicroscale energy ε and the rest that drives themotion on themesoscopic scale
(i. e., the motion characterized by the heat flux). We suggest that with the readily available standard thermo-
dynamic walls the standard thermometers measure the microscopic temperature ϑ. The difference between
T and ϑ can be made visible, for instance, by observing the detailed time dependence of the equilibration
taking place in the temperature measurement, or by observing fluctuations in the measurement results. The
formermethod needsmore detailed information about the nature of the thermodynamic walls and a detailed
analysis of solutions to (40), the latter method needs an extension of the two temperature model to a more
microscopic level. We intend to follow these indications in our future investigations.

5 Discussion

Investigations of the heat transfer on the micro and nanoscales are motivated by the importance that heat
transfer plays in electronic devices. In this paper we are entering deeper into the microscopic nature of the
heat transfer by distinguishing in the internal energy a part driving themotion on themicroscopic (atomistic)
scale andapart driving themotionon themesoscopic scale (i. e., the scale onwhichwe see theheat flux). Both
energy fields play in our mathematical formulation the role of independent state variables. In the context of
themass transfer, this extension is analogous to recognizing that a one component system is in fact composed
of two components. In the mathematical formulation of the time evolution the presence of two mass fields
in the set of state variables brings about the presence of two chemical potentials (i. e., two conjugate mass
fields). Analogically, the time evolution in the extended heat transfer with two energy fields involves two
conjugate energy fields (i. e., two temperatures).

The time evolution equations are constructed as particular realizations of the GENERIC structure. The
construction itself automatically implies agreement with all experimental observations addressing the com-
patibility with mechanics, thermodynamics, the Fourier theory, and the Cattaneo–Vernotte theory. Compar-
ison with more detailed experimental observations requires more detailed specifications of the quantities
entering the mathematical formulation (in particular the fundamental thermodynamic relation) and more
detailed analysis of solutions of the governing equations. For example, we only suggest additions to the for-
mulation and to the mathematical analysis of solutions of the governing equations that could make both
temperatures directly measurable and comparable with theoretical predictions.
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